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1. INTRODUCTION

—> In this paper we study Aalen’s \(1980) ‘additive risk model for the regression analysis

of censored surviygL@@ Let X;{t) = X(t,Y;) denote the hazard function at time t for

. subject-t ‘whose covariates are given by the p-vector Y; = (Y;1,...,Yi,)’. Aalen’s model

stipulates that

Ai(t) = E a;(t)Yi; = Y{alt) (1.1)

=1
where a = (a@j,...,0a,)" is an unknown vector of hazard functions. More generally, the

covariates can be time dependent, as considered in section 5.

"% The additive risk model provides a useful alternative to Cox’s (1972) proportional

hazards model when large sample size makes its application feasible. It is capable of provid-
ing detailed information concerning the temporal influence of each covariate. The temporal
influences of the covariates are not assumed to be proportional as they are in Cox’s model.
Buckley (1984} has pointed out that additive risk models are biologically more plausible
than proportional hazard models. Also, the use of the proportional hazards model when the
true model is additive risk has been found by O’Neill (1986'in result in serious asymptiotic

bias.

Aalen (1980) introduced estimators for the vector of integrated hazard functions,
A(t) = fot a(s)ds, which use continuous data (containing the exact values of failure and
censoring times). These estimators generalize the well-known Nelson-Aalen estimator, the
natural estimator in the case of one covariate. However, except in the case of one covariate
(Aalen, 1978), the asymptotic theory was not fully developed. One possible form of these
estimators was motivated by a formal least squares principle. This estimator, defined pre-
cisely in (2.3) and (5.4), is refered to here as Aalen’s least squares estimator. Aalen observed
that this estimator probably gives reasonable estimates and he applied it to analysis of data

from the Veterans Administration Lung Cancer Study Group.

- The first purpose of the present paper is to apply the additive risk model to the

analysis of grouped data in which only the person-years at risk and number of uncensored
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. ~~> deaths over successive time intervals, tabulated for various levels of the covariates, are
available. This kind of data typically arises in epidemiological cohort studies involving the
follow-up of large population groups over many years, see Breslow (1988). Our approach is
to use an estimator, constructed using the method of sieves (Grenander, 1981),' for which an
asymptotic distribution theory was developed by McKeague (1887). This estimator, called

the integrated histogram sieve estimator, requires only grouped data. \

In section 2 we describe the various estimators and confidence bands, give a heuristic

- W

motivation for the integrated histogram sieve estimator and show that it is approximately -
unbiased. The results of a simulation study are reported in section 3. In section 4 we apply
the additive risk model to the analysis of grouped data on the incidence of cancer mortality

among Japanese atomic bomb survivors.

wrTTTT Y W

. . The second purpbse of this paper is to derive the asymptotic distribution of Aalen’s
least squares estimator.. This is done in Section 5. It turns out that, appropriately normal- y
ized, Aalen’s least squares estimator and the integrated histogram sieve estimator have the
same asymptotic distribw’tion. In comparing the two estimators this indicates that (asymp-
totically) there is no loss in using the grouped data when the continuous data is unavailable.

We conclude section 5 with a discussion of weighted least squares estimators for the additive

[

risk model. TN L e e e ol
2. ESTIMATORS AND CONFIDENCE BANDS
;
We shall use the random censorship model in which the ith individual’s failure time b
X, is assumed to be an absolutely continuous random variable conditionally independent »

of the censoring time W; given the covariate vector Y;. Let X; = min(X;,W;) and § =
I{X; < W;) denote the time to the end-point event and the indicator for noncensorship g
respectively. Assume that the observation triples (X;,6;,Y;),s = 1,...,n are ii.d. and the ,

conditional hazard function A;(t) of X; given Y; satisfies the model (1.1).

Let I,,...,I; be intervals which partition the follow-up period [0,7T] over which

estimation of aj,...,ap or Aj,...,Ap is desired. Specifically, let I, = (b, b, + &, b




- b b

- -

.o'i lw,_l f“" )

»

r = 1,...,d. The total time that the sth individual is observed to be at risk in inter-

val I, is given by
T; =/ I(X,'Zt)dt.

The indicator that the tth individual undergoes an uncensored failure in I, is given by

Let C, be the p X 1 vector

and let D, be the p x p matrix
n
D, =) (%Y!)T.
=1

In the sequel we use the following notational convention: for any square matrix K, K~!
denotes the inverse of K if K is invertible, the zero matrix otherwise. The histogram sieve
estimator is defined by &(t) = &, when t € I,, where &, = (&,;) is the p X 1 vector
given by &, = D7!C,. Note that the histogram sieve estimator can be evaluated from the
grouped data consisting of the total time at risk and the number of uncensored failures in

each interval I;,...,I; tabulated for all realized levels of the covariates.

The form of the histogram sieve estimator can be motivated by the following argu-
ment. Suppose the time intervals Iy, I5,...,I4 are short enough so that the hazard rates
A;i(t) for all subjects can be regarded as constant within each interval I, = (b,,b,+¢,], that

is, we can take a(t) = a, for t € I,. This implies X;(t) = A;, for t € I, where X;, = Y/a,.

Under this condition we can show that E(D,a.|%) = E(C,|%,) where 7, is the
o—field generated by the covariates Yj,...,Y, and the events {)2', >b.},t=1,...,n. If the
number of observed failures in I, is large, the Law of Large Numbers will imply D,a, =~ C,.

This suggests the estimator &, = D 'C, which is the histogram sieve estimator.

To show that E(D,a,|%.) = E(C,|7) we shall prove the stronger result E(D.a,|G,)
= E(C,|G,) where G, is the larger o-field generated by 7. and the censoring times

3

-

7'\.“’;"’_4\:".;'-:"-:"'-:"'--f IO A A ARSI AT AR R AT L R N e e e \":.{-.-_\
b « < -

» v \

-

- N - -'-'.ﬂ
i A e R A A A AR R R S )

AN
-
k b oD

“

- ,-.__:

™




B ol 0

Wi,...,W,. From the definitions we have
E(C,|G,) = ZY.-E(&;,-IQ,-) and
=1

E(D.a,|§,) = Z Y(Y/a,)E(T:\|G:).
=1

Let Z;, = (W; —b,) AL,.. Given )~(,- > b,, the time T;, is an exponential random variable

(with parameter ;) truncated at Z;, so that we obtain
E(T:|Gr) = A7 (1 — exp (—Xir Zir) [ I(X; > by).
Similarly
E(&r'Qr) = P{Xt > br’ T < Zir,.gr}
= [1 — exp (=Xir Zir)J I(X: > b,).

Substituting these in the above formulas for E(C,|§,) and E(D,e.|G,) and noting that

Y/a, = A, we obtain the desired equality.

Let m, be the number of subjects at risk in I, thisis m, = ), I()?,- > b,). The
histogram sieve estimator &, will be approximately unbiased as long as m, is large and
Aird, is small for all ¢; the probability (conditional on X; > b, ) of failure during I, is small

for all subjects ¢. In showing this we use the notation
F, = E(D,|G,), ¥ =D, - F,and A, =C, — F,a,.
Both E(y,|G,) =0 and E(A,|§,) =0 with the second fact following from
F.a, = B(D,a,|6,) = E(C,5.)

which was demonstrated previously. Explicit formulas for i, and A, are

Yy = f:Y;Y;'T,-', and A, = Zn: Yié!,
=1

=1

with TS = T;, — E(T;|G,) and 6}, = &;, — E(6;,|G,).
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- Since A;.¢, is small, it is easy to see that T, is small with high probability. This

implies ¥, is small relative to F, and justifies the series expansion
Di'=(Fr+9,) ' = F' - FT YW, F7 4+ UM, Fr Wy, U~
Using this expansion and C, = F,a, + A, we find (ignoring higher order terms)

E(D;'Cr|§r) = ar + E(F7 "o F  re|Gr) — E(F7 0 F7 AL G, ).

Both of the bias terms are O(m; ). For example, writing %, and A, as sums and using

the independence of the subjects gives

E(F7 ', F7 A G:) = ) F7'YaY! F'YLE(T;65,165)-
=1
This sum contains m, nonzero terms. We expect the norm || F,"! || to be O(m!) so that
each nonzero term in the sum will be O(m>-2). Thus the sum is O(m, - m?) = O(m!).

r r

The other bias term is handled similarly.

Note, we are assuming above that the hazard rates for all subjects are constant
within each interval I,. If the hazard rates vary within the intervals, this will introduce an

additional source of bias.

The integrated histogram sieve estimator is denoted A fo &(s)ds, where integra-
tion of & is carried out componentwise. Let A(t) = fo s)ds. Under conditions (C1)-(C4)
in section 5.2, given that the partition I;,...,J; becomes finer as n — oo in such a way
that /n max(¢y,...,€s) — 0 and n min(£y,...,€4) — oo, then an asymptotic 100(1 — )%

confidence band for A; is given by
, 2 20
A(t) £ can™Y2G,(T)?(1 + =2L),t € [0, T (2.1)
GJ’(T)
where ¢, is the upper a quantile of the distribution of sup, o 4 |B°(t)|, B® is the Brownian

bridge process,

&) = [ a(e)as (2.2)

~ 5
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p
gry=n E Gry E E Mf(“av’w)(D:l).‘iv(Dr_l)jw’

Mr (u, v, w) = Z},iu}’iv},inir-

i=1
A table for the distribution of sup,o 4 |B°(t)| has been given by Hall and Wellner (1980).
An asymptotic 100(1 — a)% confidence interval for A;(t), at fixed ¢ € [0, T}, is given by

fij(t) + za/zn-llzé'j(t) 1/2,

where z,/; is the upper a/2 quantile for the standard normal distribution.

Aalen’s least squares estimator is defined by

Ait)= )_ D'y, (2.3)
8;=1
J'(.-St

where the summation is over individuals ¢ whose failure times are uncensored and less than

or equal to t, D; is the P X p matrix

D; = YkYk' (2.4)
Xe2 X

where the summation is over individuals k at risk at time )~(,- .

Under conditions (A1)-(A3) in section 5.1 an asymptotic 100(1 — a)% confidence band for

A; is given by

Aj(t) £ can™V2G,(T)/? (1 + g ((T)) ),t € [0,T] (2.5)

;
where ¢, is defined above and

G, (t) = Z gis» (2.6)

=1
X<t
P 1 4
- ' —l (Nn-1y.
gi; =n E : (D; Y-)u§ : 2 : (4, v,w) (D7) jo(Di ) jws
u=1l v=]1 w=1
6
) 'y Y3 % ¥ o I T9 ] 2 P e PN, AT T N ~ - Ny \f\,-\‘r‘.'%*\_"-*'-_.‘..,‘.‘_-.’\__- ORI I
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Xe2X;
An asymptotic 100(1 — a)% confidence interval for A;(t), at fixed t ¢ {0,T], is given by
Aj(t) £ zq)on V26 (1) M2

Note that, unlike the confidence intervals, the confidence bands given above are de-
pendent on the choice of T. As T increases the band widens at all points. It also becomes
more unreliable since the effective sample size nr = #{i : X; > T} for estimating the
asymptotic variance at time T is getting smaller. In practice we found it reasonable to set
T so that nr is at least 10% of the sample size. This is the case for the simulated data in

section 3 and for the atomic bomb survivor data in section 4.
3. ADDITIVE RISK MODEL SIMULATIONS

In order to evaluate the performance of the confidence intervals and bands proposed
for grouped data, a Monte-Carlo experiment was performed to see whether their asymptotic
properties take effect under sample sizes, grouping and censoring found in typical applica-
tions. The simulation model used p = 2 covariates with i.i.d. uniform distributions on the
lattice {§,r = 1,...,8} and corresponding hazard functions a;(t) = 1,a2(t) = t,t > 0.
The censoring time was independent of the failure time and exponentially distributed with
parameter [, for various values of §. The follow-up period was [0,1]. The sieve intervals
Ii...., 14 were of equal length. For various combinations of n, d, and #, 500 samples
of grouped data were generated via the random censorship model. For each of these 500
samples we constructed the asymptotic 95% confidence bands (2.1) for the true integrated
hazard functions A,(t) =t and A,(t) = -21-t2 on the interval [0,1]. The proportion among
the 500 bands that contained A; on the interval [0,1] was then determined (for j=1 and
2). The sample size n was set to 1000 and 4000. The sieve dimension d was set to 8, 16,
and 64. The censoring parameter  took the values .3 and 1.5 which amounted to 28% and
68% censoring prior to the end of follow-up, respectively. With 8 = .3 (8 = 1.5) there were
on average 33% (10%) surviving beyond the end of follow-up.

..............
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The results are displayed in Tables 1 and 2 below. The random number generator
used the same initial seed for the runs marked a and different seeds for the runs marked b
and c. Runs with the same initial seed have identical failure times.

Table 1. Observed Coverage Probabilities with 500 Simulations
using Exponential Censoring (8 = 0.3) — 28% Censoring.

n = 1000°® n = 4000°
d Covariate 1 Covariate 2 Covariate 1 Covariate 2
8 976 982 082 .966
16 972 980 978 .964
64 958 970 .966 .960

Table 2. Observed Coverage Probabilities with 500 Simula-
tions using Exponential Censoring(8 = 1.5) — 68% Censoring.

n = 1000° n = 4000°
d Covariate 1 Covariate 2 Covariate 1 Covariate 2
8 978 982 .982 .982
16 972 980 980 .984
64 958 974 974 .980

Observe from Tables 1 and 2 that the bands appear to be conservative but as d
increases the coverage probabilities, on the whole, get closer to their nominal value of .95.
This is true for both covariates under both light (28%) and heavy (68%) censoring. On the
other hand, in all the simulations we carried out, the coverage probabilities for the pointwise
confidence intervals were very close (not significantly different) to .95, a typical case being

given in Table 3 below (see column 5).
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Table 3. True and Average Estimated Cumulative Hazard
Function, Standard Deviation of the Simulated Estimates and
confidence Interval Coverage Probabilities with 500 Simulations,
28% Censoring (# = 0.3), n = 1000, d = 8, Covariate 1.

True Average of  Standard deviation Proportion of
Time integrated simulated of simulated confidence intervals
hazard estimates estimates containing the
true value
125 125 .1236 .026 940
.25 .25 .2513 .038 .940
375 375 3781 .49 954
.5 .5 5024 .060 .948
625 625 6243 071 952
.75 .75 7501 .082 960
.B75 B75 .8736 .096 948
1.0 1.0 1.0010 113 .948

Also observe from Table 3 that the estimators appear to be unbiased, in support of
the heuristic arguments in section 2.

Figures 1-4 contain plots of the estimators under light (28%) and heavy (68%) cen-
soring for d=8 and d=64. The sample size n was set to 2000 and the random number
generator used the same initial seed for all runs, so the failure times used in each run are

identical.

[Insert Figures 1-4 here]

As expected, the bands are wider under the heavier censoring; compare Figures 3
and 4 with Figures 1 and 2. Also, it appears that the estimator which uses d=8 (in Figures
1 and 3) is a smoothed version of the estimator which uses d=64 (in Figures 2 and 4).
Although the estimators are adequate in each case, notice that under heavy censoring the
estimator which uses d=64 (in Figure 4) oscillates considerably when t is close to 1. This

is due to the very small number of observed failures (averaging less than 5) for each of
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. the sieve intervals in this region. A more flexible procedure would be to merge adjoining
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intervals which contain very few observed failures. For contrast, in Figure 2 notice that the
2 oscillation is negligible. This is because of the lower censoring rate which gives an average

of more than 10 observed failures per interval near t=1.

N
,'5 4. APPLICATION TO THE ANALYSIS OF CANCER MORTALITY
j;: AMONG JAPANESE ATOMIC BOMB SURVIVORS
)
)
N
L X
The Radiation Effects Research Foundation (RERF) in Hiroshima, Japan, has fol-
' !
s lowed since 1950 a group of over 100,000 atomic bomb survivors. Data on these survivors |
[}
v is the primary source of information on the epidemiologic effects of ionizing radiation. The
o National Research Council (1980) report and the report by Kato and Schull (1982) contain
M detailed analyses of these data. However, as noted by Pierce and Preston (1984), a diffi-
}, culty with the methods used in these reports is that they do not make explicit allowance
)i
W for temporal variation in risks; they simply average the risk over the follow-up period.
y Pierce and Preston (1985) analyzed cancer mortality among the atomic bomb sur-
- vivors using a parametric additive risk model which they called the excess risk model. They
found that background and excess rates of cancer mortality vary markedly with age at
e exposure and time since exposure.
N
u
) The approach taken here is to fit a nonparametric additive risk model of the form
* (1.1) for each of 4 cohorts defined by the age at exposure intervals 0-9, 10-19, 20-34 and
i' 35-49 years of age at time of bomb. The time variable t is time since exposure, ranging from
8 5 to 37 years over the follow-up period from 1950 to 1982. The only censoring prior to the
"
» end of follow-up is that due to other (non-cancer) causes of death. Summary information |
. for each cohort is give in Table 4.
o
o
Ud
X
{
-
- 10
N
fi]
1
2
‘\. ................... N ~ .
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]
Table 4. Cohort Sizes, Summary Mortality Figures and Cen- N
soring Prior to End of Follow-up. .

Age at Deaths due to Deaths from

exposure Cohort size*  Cancer excluding all causes Censoring ‘
Leukemia 5

0-9 18416 93 728 87% .

10-19 19242 349 1715 80% .

20-34 17694 949 3075 69% .

35-49 20916 2788 11234 5% ®

* Approximate, having been estimated from the grouped data.

Three covariates are used. For individual i they are: Y;; = indicator (male), Y;, =
indicator (female), Y;3 = dose (in units of 100 rads). The hazard functions «; and «; are
the background cancer mortality rates for males and females respectively. The third hazard
function aj is the excess cancer mortality rate per 100 rads of radiation exposure.

In the data provided to us by the RERF time since exposure is grouped into eight 3

3
4-year intervals: 5-9,..., 33-37 years since exposure. It is natural to use these eight time _
intervals as the partition of the follow-up period in the evaluation of the sieve estimators. As :
in Pierce and Preston (1985) the dose variable is taken as the midpoint of one of the six dose "
groups: 0, 1-50, 50-100, 100-200, 200-300, > 300 rads with dose=400 for dose > 300. Average ’
doses for the dose groups are not used because of current reevaluation of the dosimetry. "_
Also, the analysis is limited to the epithelial cancer mortality, in which leukemia mortality ®

is excluded.

Figures 5-8 indicate our estimates and 95% confidence intervals and bands for the
background and excess cumulative cancer mortality rates as functions of time since exposure. !
The estimates of Pierce and Preston are also plotted. All estimates are given in units of

deaths per 1000 persons at risk. Pierce and Preston’s parametric model for the cancer

A J

mortality rate A(t) is given by

“x

A(t) = exp {Voe + V14 + V2, log(e + t)} + Bd exp {poc + p1 log(t)}, (4.1) :
,

11 P
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where e = midpoint of age at exposure interval, s = sex, and d = dose. The first and second
terms in (4.1) represent the background and excess cancer mortality rates which Pierce and
Preston fitted by maximum likelihood. We have integrated these to provide a comparison

with the integrated histogram sieve estimates.
[Insert Figures 5-8 here]

From Figures 5-8 we see that there is a significant dose effect (i.e. the band for
dose does not contain the zero function) for all cohorts. This is despite the fact that the
confidence bands with eight sieve intervals are conservative according to our simulation
results in section 3. In interpreting Figures 5-8 bear in mind that the vertical scales are
different for each cohort. Despite appearances, the dose effect bands have roughly the same
width for each cohort.

On the whole our estimates are in agreement with those of Pierce and Preston (1985).
We also observe that the relative risk (dose effect vs. background) decreases sharply with
age at exposure. Our estimates for the dose effect are somewhat higher than Pierce and
Preston’s, but their estimates are still within our 95% bands. However, there is a signifi-
cant difference between our estimates and Pierce and Preston’s for the female background
mortality rate in all but the 0-9 years of age cohort.

The data used for the analyses in this section are contained in the file
R1OCANCR.DAT which is described in the Life Span Study Report 10, Part I published
by RERF. The file was supplied to us by RERF which is a private foundation that is funded
equally by the Japanese Ministry of Health and Welfare and the U.S. Department of Energy
through the U.S. National Academy of Sciences. The conclusions reached in this paper are
those of the authors and do not necessarily reflect the scientific judgement of RERF or its

funding agencies.
5. ASYMPTOTIC RESULTS

In this section we give a general formulation of the asymptotic results which underlie
the confidence bands in section 2. Definitions of the martingale concepts used in this section

can be found in the review paper of Andersen and Borgan (1985).
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First we look at the basic counting processes and martingales involved in the random
censorship model. Let N;(t) be the indicator of an uncensored failure for subject ¢ prior to
time t,

N.'(t) = I(Xi <t b = 1).

Aalen (1978) showed that the counting process N;(t) can be written in the form
Pt
Nit) = 3 [ as(e)¥o)ds + M),
=1

where Y;;(t) = Y;;I(X; > t) and M; is a square integrable martingale with respect to the
filtration # = o(N;(s), Yi,;(s+),0< s <t, ¢ > 1,7 =1,...,p). Note that no two of the
counting processes Ny,..., N, jump simultaneously.

More generally, let N(t) = (Ny(t),...,Na(t))’s t € [0,1] be a multivariate counting
process with respect to a right-continuous filtration (%), i.e. N is adapted to the filtration
and has components N; which have sample paths which are non-decreasing, right-continuous
step functions, zero at time zero, and with jumps of unit-size. Moreover, suppose that no
two components jump simultaneously. Let A be the compensator of N,sothat N = A+ M
where M = (M,,...,M,)" and My,..., M, are local martingales. Aalen (1980) introduced
the model

A(t) = /ot Y(s)a(s)ds (5.1)

where a = (ay,...,a,)" is a vector of unknown nonrandom integrable functions, Y (t) =
(Y:;(t)) is an n x p matrix of covariate processes, with Y;;(t) representing the jth covariate
for the ith subject a time t. The covariate processes are assumed to be predictable and
locally bounded (which is the case for instance if they are left-continuous with right-hand
limits and adapted). This model allows much more general censoring mechanisms (quite
arbitrary apart from being predictable) than the one considered in section 2. Unlike Aalen
we do not assume, unless explicitly stated, that EN;(1) < oo (in which case M; is a square
integrable martingale), only that N;(1) < co almost surely.

Aalen (1980) discussed estimators A* of A of the form

I T e A e e T e e e e e T O i T e i SR A
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where Y ~(s) is a predictable generalized inverse of Y (s). In the case p = 1, the choice
- - -1 .
Y= (Nu=_Yuls) ™ i=1,...,n
k=1

(where 1/0 = 0) gives the Nelson-Aalen estimator for which a general asymptotic theory
4 was derived by Aalen (1978). The powerful martingale techniques used in this theory allow
the conventional i.i.d. structure to be superceded; only very weak asymptotic stability and
Lindeberg conditions need to be imposed on the (single) covariate, see Andersen and Borgan
(1985, p. 136).

The case p > 1 is more complicated. First, it is not clear which generalized inverse

{ Y~ of Y to use. Aalen (1980, Remark 1) considered

Y~ (s) = (Y'(s)Y(s))7'Y'(s) (5.3)
which he motivated by a formal least squares principle and noted that the resulting estimator

A0 = [ @YY G) (5.4)

probably gives reasonable (though not optimal) estimates of A. Second, the problem of

finding the asymptotic distribution of the general estimator of the form (5.2) is intractable.
5.1. Aalen’s least squares estimator

Despite the difficulties alluded to above it is possible to obtain the asymptotic distri-
bution of A in a straightforward way by applying Rebolledo’s Central Limit Theorem for
local square integrable martingales in the form given by Andersen and Gill (1982, Theorem
1.2). Let D[0,1]” be the product of p copies of D[0,1] and equip it with the Skorohod
product topology. Denote
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CONDITIONS

(A1) (Asymptotic stability). For j,k,£ = 1,...,p there exist bounded functions K
and R,y, defined on [0,1] such that

Jup Koa(t) = Kot o

P
:s|up |Rjke(t) — Rike(t)] = O.
6

(A2) (Lindeberg condition). For each j=1,...,p
n~¥sup |v;;(t) S o.
it

(A3) (Asymptotic regularity condition). The p X p matrix function K(t) = (K;x(t))
in (A1) satisfies

inf det K(t) >0
te[0,1]

THEOREM 5.1. Under conditions (A1)-(A3)
Va(A-4) & m in Dpo,1

where m is a p-variate continuous Gaussian martingale with m(0) = 0 and covariance

functions

Cov(m,(t), mi(t)) = Gjx(t)
where

“YEY / Ruwn(8) (K (5))j0 (K ~1(5) w ava(s)ds (5.)

u=lov=1lw=l

The following theorem shows that

= EZ E/ R"""’ (K l(s))Jv( l(s))kw dA ( ) (5.8)

lv=1lw=1
is a uniformly consistent estimator of the covariance matrix of the limiting Gaussian mar-

tingale. In the survival analysis context G,; is given by (2.6).
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THEOREM 5.2. Under conditions (A1)-(A3), for each j,k =1,...,p

sup |éjk(t) - GJ'k(t)‘f’O-
te|0,1]

Combining Theorems 5.1 and 5.2 with standard results from Billingsley (1967, Theorems
4.1 and 5.1) shows that (2.5) is an asymptotic 100(1 — a)% confidence band for A;. The
transformation to the Brownian bridge which is used in deriving this confidence band is
described by Andersen and Borgan (1985, p. 114).

The Lindeberg condition (A2) holds if the covariates are bounded by random variables
having a bounded rth moment for some r > 2, c.f. the discussion of Andersen and Gill (1982,
p.1110) in the context of Cox’s proportional hazards model.

The following theorem gives conditions under which (A1)-(A3) hold in the i.i.d. case
in which the (N;,Y;y,...,Ysp) are i.i.d. replicates of (Ny,Y11,...,Y1p).

THEOREM 5.3. In the i.1.d. case with Y left-continuous with right-hand limits, conditions
(A1)-(A3) are satisfied if for each j=1,...,p

E Y2(t)]) < 5.9

(sum I¥501) <0 (5.9)

and the p x p matriz K(t), now defined by K,;i(t) = EYy,(t)Y1x(t), satisfies condition (A3).

5.2. Integrated histogram sieve estimator

The histogram sieve estimator is defined in the setting of the counting process model
(5.1) by &(t) = e, for t el,, where &, = (&,,) is the p x 1 vector give by &, = D] 'C,,
and C, is the p x 1 vector

Crz/ Y'(s)dN(s),

D, is the p x p matrix

D, = [ Y'(s)Y(s)ds.
1

Note the similarity between the integrated histogram sieve estimator

A(t) = /0 t &(s)ds
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and Aalen’s least squares estimator. However A is not (%) - adapted and the derivation of

its asymptotic distribution theory is much more difficult. The following result of McKeague

(1987) gives the asymptotic distribution of A.

CONDITIONS.

(C1) (Asymptotic stability). For j,k,€ = 1,...,p there exist function K, and R,
defined on (0, 1] such that

sup |K;x(t) — Ksk(t)] = Op(n~1)
tel0,1)

ts[uP IRJkC() J'kl(t)‘ L 0.

(C2) (Lindeberg condition). Same as (A2).

(C3) (Asymptotic regularity condition). The p x p matrix K(t) = (K;x(t)) is nonsin-
gular for all ¢ € [0,1].

(C4) The functions a;, K;x,R;xe J,k,£=1,...,p are Lipschitz.

THEOREM 5.4. If conditions (C1)-(C4) hold, EN;(1) < oo for all i > 1,
vn max(¢,,...,84) — 0, and n min(¢;,...,€4) = co then

Vn(A-4) 3 min clo,1)

where m s the p-variate continuous Gaussian martingale of Theorem 5.1.

The appropriate (sieve based) estimator of the covariance matrix of the limiting

Gaussian martingale is given by

] M'u
i [\/}._,
'\:.
Q>
@
—
n
j
X
[
[~
e
——
»
p o —
—
N>
t
—-
—
»n
g
S
“w
<
—_—
xv
I
—-
—_——
w»
N
p o
=
e
QU
©»n

where K (t) is the p x p matrix with entries

Ku(t) = / Y;;(8) Yir( for tel,
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CRTE
"’

and

Ruvu:(t) = nll Z/; Yiu(8)Yiu(8)Yiu(s)ds, for tel,.
Toi=1 r

In the survival analysis context é,-,- simplifies to (2.2). It can be shown, under the hypothe-

ses of Theorem 5.4, that G,; is a uniformly consistent estimator of G,; (McKeague, 1987).

bt 0

-

It follows that (2.1) is an asymptotic 100(1 — a)% confidence band for A;
5.3. Weighted least squares estimators

Neither Aalen’s least squares estimator nor the integrated histogram sieve estimator
is an optimal estimator. In the case of a single covariate the Nelson-Aalen estimator is
optimal. However, if weighted least squares is used instead of ordinary least squares, it is
possible to improve th performance of Aalen’s least squares and the integrated histogram

sieve estimators. Specifically, consider the weighted least squares estimator

‘i(t) =/0 (Y/(s)W(s)Y (s)) "Y' (s)W (s)dN(s) (5.10)

where W (t) is the n x n diagonal matrix having ith diagonal entry
Ld -1
wit) = (3 &0)Y) , i=1..n

where &; is a predictable estimator of a; and 1/0 = 0. Note that A is an estimator of the
form (5.2). In the case of a single covariate 1:& coincides with the Nelson-Aalen estimator
and no companion estimator &; is needed. For more than one covariate a predictable
estimator &, for a; can be constructed by kernel smoothing of Aalen’s (ordinary) least

squares estimator A as follows. Let

_° d“iJ.(s)’

where K is a continuous function having support (0,1] and integral 1, and b, > 0 is a
bandwidth parameter which tends to zero as n — oco. Under conditions on «;,k and b,
uniform consistency of &; can shown using similar techniques to those of Ramlau-Hansen

(1983) for the Nelson-Aalen estimator. Finally, along the lines of the proof of Theorem
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5.1, it can be shown under mild regularity conditions that \/ﬁ(;& — A) converges weakly in

D[0,1]? to a p-variate Gaussian martingale m with m(0) = 0 and covariance matrix

Cov(m(t), m(t)) = /ot V=1(s)ds

where (in the i.i.d. case) V(s) is the p x p matrix with entries

Vi(t) = E[ Y15 (8) Y1k (t) ]

D=1 ae(t)Yie(t)
The weighted version of the histogram sieve estimator and its integrated counterpart can J

be developed in an analogous fashion. The weighted least squares approach will be treated

at length in a subsequent paper. :
APPENDIX

PROOF OF THEOREM 5.1. First split \/n(A(t) — A(t)) into four parts using (5.1), (5.4)

and (5.5):
VRGA®) - AW = 5= [ K V)am() (A1)
V7 Jo
+L /t(J(s) —1) K~Y(s) Y'(s)dM(s) (A.2) :
vr Jo . »
1 [* 2105} — K-1(s)Y(s s :
+ 2= [ @R - K@Y aM) (A |
+va [0 - 1)40) (4.4) ,
where

J(t) = I(K(t) is invertible). (A.5)

The local martingales M,,..., M, are local square integrable martingales on the time in-
terval [0,1] and their predictable quadratic variation processes are given by
t

< M;, M; > (t) = / /\.'(s)ds and < M",MJ' > (t) =0, 1#7J (A.G)
0
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Now consider (A.1) which can be written as X(*)(t) = (X{")(t), . .,X},")(t))' where

M =S [ B (aMi(s
xP0 =3 [ B eams

BP0 = = 3 (K1 (0) s ¥ar ).

Condition (A3) implies that the functions (K ~!(t)),x are bounded so that XJ(.") is a local

square integrable martingale. Also, from (A.6)
< x™, x> / Z B (s) B (s)hi(s)ds

so that using the asymptotic stability condition (A1), for all 5,k and ¢
n n P
<x™ xM > @) B oeul)

as n — oo. Next, the boundedness of the functions (K ~!(t));x and condition (A2) imply
the following Lindeberg condition: for all j and € > 0

/ ZH‘"’(t)%\ IH ()] > e)at D 0

as n — 00. By Rebolledo’s Central Limit Theorem for local square integrable martingales
in the form given by Andersen and Gill (1982, Theorem 1.2} it follows that X5 min
D{o,1)r.

Note that by conditions (A1) and (A3),

-~

P(K(t) is invertible for all te(0,1]) 1 (A4.7)

as n — oo. This shows that terms (A.2) and (A.4) converge uniformly to zero in probability

as n — o0o.
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Finally consider (A.3) whose jth component is given by

(n) -——l—-n t sp~'ls—'1s~-s (s
z| (t)—ﬁgfo T 3 [R™6) = K™ 0 Yol 04 ()

which is a local square integrable martingale. By Lenglart’s (1977) inequality, for each

e>0,n>0
P( sup |Z( ()] > g) < -'-’5 + P(< Z}"),Z}n) > (1) > n). (A.8)
te[0,1] £

Now evaluate < ZJ."),ZJ(.") > using (A.6) to obtain

20,780 > ) = 2 3° [ s R0 - KL nloa
i=1 70 k=1

<pz{sup R () - K Ol HE Z / (s)ds}. (4.9)

te[0.1)

By the componentwise continuity of the matrix inverse operation and conditions (A1), (A3)

we have for the first term in (A.9)

fﬂé‘h”K ') - KOl S o. (4.10)

Also, using condition (A1), for the second term in (A.9)

l 2 sY M:(s)ds _}: - ! ki (t) oy . .
SO IRAOINEE ;/0 R (t) ey (1)t (4.11)

Combining (A.8)-(A.11) we conclude that (A.3) converges uniformly to zero in probability

as n — oo. This completes the proof of the theorem. g

PROOF OF THEOREM 5.2. Fix j and k. Let L(t) and L(t) be the 1 x p vectors with

components

3N Ruvu 1 0)) 0 (K710 kw

u=lw=l

Lu(®) = 32 )" Ruvw E )0 (K ™ Dk
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Using (5.1), (5.4) and (5.5) we can write

Gonlt) = Gaelt) = / L(s)K~*(s) Y'(s)aM (s) (4.12)
+ /0 J(s)(E(s) - L(s))dA(s) (4.13)
+ /: (J(s) — 1)L(s))dA(s). (A.14)

The term (A.14) is dealt with using (A.7). From (A.10) and the asymptotic stability con-
dition (A1)

sup |Lu(t) - L(t)] 5 o,
te|0,1]

which deals with (A.13). Finally, using Lenglart’s inequality it is seen that (A.12) also

converges uniformly in probability to zero. g

PROOF OF THEOREM 5.3. Apply the Strong Law of Large Numbers in D|0,1] (Rao,

1963) in the reversed time direction.

Acknowledgment. The authors thank Dr. David G. Hoel for his help in obtaining the

data used in Section 4.
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Key to Figures 1-8

Thick lines = integrated histogram sieve estimates.

-

Regular dashed lines = 95% pointwise confidence limits.
Thin lines = 95% confidence bands.
Irregular dashed lines = true integrated hazard functions (in Figures 1-4).

Lines marked with boxes = estimates of Pierce and Preston (in Figures 5-8)
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Figure 1. Light censoring (28% ), n = 2000, d = 8. (a) Covariate 1. (b) Covariate 2.
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Figure 3. Light censoring (28% ), n = 2000, d = 64. (a) Covariate 1. (b) Covariate 2.
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. Figure 4. Heavy censoring (68% ), n = 2000, d = 64. (a) Covariate 1. (b) Covariate 2.
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Figure 5. 0-9 Years of Age at Exposure. (a) Background for males. (b) Background for
females. (c) Excess.
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